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The impact of foundation models in robotics
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Robots meet Large-scale Language-Vision-Action models

o4

4x speed “RT-1 Controlling the robot

Instruction: Roses are red, violets are blue, Bringime the chips from the drawer, and a napkin too
Current step: -

RT-1: Robotics Transformer (robotics-transformer.github.io


https://robotics-transformer.github.io/

Meta-survey of LLM, LVM for robotics

Posted on 22 June 2023.
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~NLP, CV, V&L after the introduction of Transformer

Transformer
[Vaswani+, 2017]

Transformers utilize only
attention mechanisms.
They have demonstrated
superior performance
compared to traditional
models such as

recurrent or
convolutional models.
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~Robotic applications of Language-Vision Models 1

CLIP (Contrastive Language-Image Pre-Training) is a neural network model
trained on various pairs of text and images. It can be applied to various tasks in a
zero-shot manner. There are already numerous applications of CLIP in robotics.

CLIPort [Shridhar+, CoRL2021]
®.'9

e o ®» O

“put the red blocks in the green bowl*®

Prediction of affordances in robotic task by CLIP.

Distilled Feature Fields [W. Shen+, CoRL2023]

. 3D Feature Field ?
3_ Extract Dense b 3 )‘
o, 2D Features
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) 1
1. Scan Scene 2. Distill Features 3. Language-Guided Manipulation

Designing a feature space that connects 2D image features to 3D
geometry, enabling few-shot language-to-6DoF grasping.
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Robotic applications of Language-Vision Models 2

Embedding knowledge into 3-D representations

LERF: Language Embedded LLM-Grounder [Yang, 2024]
Radiance FieldS[Kel’H', 2023] Chat with NeRF (chat-with-nerf.github.io)

https /Iwww.lerf.io/
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Connecting NERF and CLIP to embed text in a three-dimensional Combining the technologies of GPT-4/LLaVA/BLIP-2/NeRF
space. Studio/LERF enables dialogue about 3D scene environments/objects.
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https://www.lerf.io/
https://chat-with-nerf.github.io/

Language-Vision-Action model

4x speed S RT-1 Controlling the robot

Instruction: Roses are red, violets are blue, bringme the chips from the drawer, and a napkin too
Current step: o

RT-1: Robotics Transformer (robotics-transformer.github.io


https://robotics-transformer.github.io/

RT-1: Robotics Transformer (robotics-transformer.github.io)

Instruction - Action
PO agpie Yom 100 Gawer ard phace On Courter Mode Arm Base
. RT-1 ;
Images Iz
FiLM
. EfficientNet TokenLearner Transformer

(a) RT-1 takes images and natural language instructions and outputs discretized base and arm actions. Despite
its size (35M parameters), it does this at 3 Hz, due to its efficient yet high-capacity architecture: a FiLM (Perez
et al., 2018) conditioned EfficientNet (Tan & Le, 2019), a TokenLearner (Ryoo et al., 2021), and a Trans-
former (Vaswani et al., 2017).

Trained on 700+ tasks, 130k demonstrations Generalzes to tasks ! A ‘ ! Long-horizon tasks

(b) RT-1"s large-scale, real-world training (130k demonstrations) and evaluation (3000 real-world trials) show
impressive generalization, robustness, and ability to learn from diverse data.


https://robotics-transformer.github.io/

Large-scale real-world data

—

130,000 robot action sequences data
10 robots x 17 months



The necessity of large-scale data in foundational models

The scaling law [Kalpan, 2020}

The scale of data and the performance of the model are directly proportional.

Even in robotics, this law has begun to be demonstrated[PadaIkar, 2023].

Models % Tasks % Data

Seen Tasks

Generalization

All Unseen Tasks Distractors Backgrounds

Smaller Data

- Increasing the amount of data improved

RT-1 (ours) 100 100 97 7 76 83 59
RT-1 100 51 71 50 52 39 59 . .
RT-1 100 37 55 46 57 35 47 [> generallzatlon performance
RT-1 100 2 e 50 29 14 31 41
RTI@us 100 100 97 1 1 5 5 - Task success rates improved as data diversity
RT-1 75 " 86 54 &7 42 53
increased
® Seen Tasks
100% . ® Generalization
e = ety the more tasks a robot learns,

60%

405

Success Rate

20%

e

Decreasing
data diversity

0%

0% 0%

40% 60%

% of Data

Open-X-Embodiment [Padalkar, et al, 2023]

8%

100%

& 75% Tasks

the better it becomes at performing its job.
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Collecting real-world large-scale data through brute force methods

Open-X-Embodiment:
1M episodes, 527 skills (160,266 tasks)
22 different robots, 21 institutions, 60 datasets

e B8 8 8 B

RT-1-X performing diverse tasks in 6 academic labs
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24 *5
Lol e " - a— - . Bl AT
Kitchen Manipdation Cabie Routng NYU Door Opening Atcisb URS Task-Agnoatic Play Moan
RT-1-X mocels outperform RT-1 or Original Methods trained on individual

datasets by 50% in the small-data domain

Open-X-Embodiment [Padalkar, et al, 2023]

https://robotics-transformer-x.github.io/

w 1M Episodes from 311 Scenes :

‘‘‘‘‘

22 Embodlments

gl

527 Skills

o

pour
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route

stack

60 Datasets

- [ Pog <59

1,798 Attributes - 5,228 Objects - 23,486 Spatial Relations
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Emergent Abilities of Large Language Models [Wei

2022]
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Accuracy (%)
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Collecting real-world large-scale data through brute force methods

AuUutoRT: 77K episodes,
6650 unique language instructions,
20 robots, 7 months

AutoRT [Google DeepMind, 2023] https://auto-rt.github.io/

? robotpaper.challenge == cvpaper.challenge 14



Transferring human behaviors to robots

Leader-follower systems have emerged with low cost, intuitiveness, and responsiveness.

Cook Shrimp

(autonomous)

3x speed

Mobile ALOHA [Z. Fu+, 2024]
https://mobile-aloha.github.io/

GELLO [P. Wu+, arXiv 2023] ALOHA [T. Shao+, RS52023]
https://wuphilipp.github.io/gello_site/  https://tonyzhaozh.github.io/aloha/ ? robotpaper.challenge == cvpaper.challenge 15



Imitation of human dexterity
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Teaching Robots New Behaviors [TRI, Youtube 2023]
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Randomization of “motion”

[OpenAl et al. 2019) )

Randomize parameters related to the physical dynamics
such as mass and dimensions of objects or robots, friction,
control gains (PID), observation noise, joint constraints, etc.

[1808.00177] Learning Dexterous In-Hand Manipulation (arxiv.org)



https://arxiv.org/abs/1808.00177

Unreal

: . :
Generative Al augments robot’s experience experience!
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+ Generative models?

Scaling Robot Learning with Semantically Imagined Experience (diffusion-rosie.github.io)



https://diffusion-rosie.github.io/

Randomization of object shapes based on mathematical equations

3D IFS parameter setting & Affine transform 3D fractal model F

ractal category definition

laj by CJW Ji| oz .\ LN
xip=|d & fi|xia+ |k e
9i hj ij lj - Y / Category 1 Category 2 Category 3 U n rea I
(j=12..n) x N Variance : H
. . [ J
. > iteration check O b_' ECtS !
a; = —0.40,b; = —0.61,¢; = 0.72, . Init ;
d11= -0.19, e11= —0.20,f11= -0.22, @ : Initial point
g1 =0.96,h; = —0.84,i; = —0.53, : Transformed point
ji = —0.48,k; = —0.79,1, = 0.83 o
7, <—: Point movement Category M-2 Category M-1 Category M
. . e ——
After M categories defined
Instance
augment
Main: Category M
Alignment Hm Ground t_ruth HM
generation

3D fractal scene generation 3D bounding box & Centroid

Randomly generate 3D shapes using fractals and place them
in the scene. Utilizing a small amount of data for pretraining
improves the performance of object detection (by VoteNet)
from 3D point clouds.

Ryosuke Yamada, et el., “Point Cloud Pre-training with Natural 3D Structure”, CVPR 2022

Intra-category augmentation

cvpaper.challenge



Randomization of object shapes using mathematical equations

Pretraining with object database generated by fractals Dex-Net 2.0 Grasp-FractalDB (Ours)
Unreal Grasp-FractalDB
é %n OQ&ECtS' Ik r r
B | Ty <
5 - 1{ l/‘\é& 5

In some cases, =
- we don'’t need real world data for training real world robot
- we don't have to try to make the unreal experience resemble reality

T

Depth image Estimate grasp quality
GQ-CNN for parallel jaw gripper

e
Before(far from CoM) After (more robust grasp) W W

Yamada, SS112022

e Grasp-FractalDB
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Acquisition of cross-modal ability from unreal experience

Learning the relationship between vision(depth) and object softness through simulation

Picking by visual information
- Missing to grasp soft objects.
- Picking errors

Depth image

T\

Stiffness estimation

0—

Hand Model

A

y

\ 4

Stiffness map

Target stiffness

Grasp pose detection

-
m- DY

a

N

A\ 4

Experiecne augmentation
based on “depth-to-softness”

\ simulation

Segmentation image

4DoF grasp pose

K. Makihara, et. al., “Grasp pose detection for deformable daily items by pix2stiffness estimation”, Advanced Robotics, 2022.



Acquisition of cross-modal ability from unreal experience

The robot “pushes aside soft objects”
to pick up the target.

Without cross-modal With cross-modal
ability ability

K. Makihara, et. al., “Grasp pose detection for deformable daily items by pix2stiffness estimation”, Advanced Robotics, 2022.



Acquisition of cross-modal ability from unreal experience

simulation

Learning the relationship between vison
and “forces acting between objects”
through simulation.

 Domain Randomization  Kernel Density Estimation
* moving average on time

. ‘ P

ResNet
=  ResNet50 —» B — based —
Decoder
Encoder Decoder

Forcemap
(contact force label)

[Hanai, IROS2023]

Force Map: Learning to Predict Contact Force Distribution from Vision (ryhanai.github.io)



https://ryhanai.github.io/force_prediction/

Acquisition of cross-modal ability from unreal experience

We have successfully achieved real-time visualization of the forces between objects in 3D,
using only a single RGB image

|
|

(x=395, y=24) ~ R:103 G:120 B:73 (x=13, y=86) ~ R:168 G:151 B:153 (x=13, y=86) ~ R:152 G:141 B:151

Force Map: Learning to Predict Contact Force Distribution from Vision (ryhanai.github.io) (R.Hanai, IROS2023)


https://ryhanai.github.io/force_prediction/

Conclusion : Learning from reality / unreality

Learning from reality Learning from unreality
Accurate experience ' ' Experience augmentation
Q&% Domain gap ’ | b -' |
: - Randomization " ‘
- Curriculum
R :

There are cases
where it's not
necessary to

fill the gap!




Future : Professional robot learned from experiences beyond reality

3

Learning from unreality

- Incidents that are unlikely
to occur in reality

- Parameter randomization
over a slightly broader
range than reality

Example:

Experience in surgical
vascular anastomosis
slightly narrower than
reality.
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Next step : physical foundation models

VRT-1 Controlling the robot
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