ロボットチャレンジと 産業の接点を探る

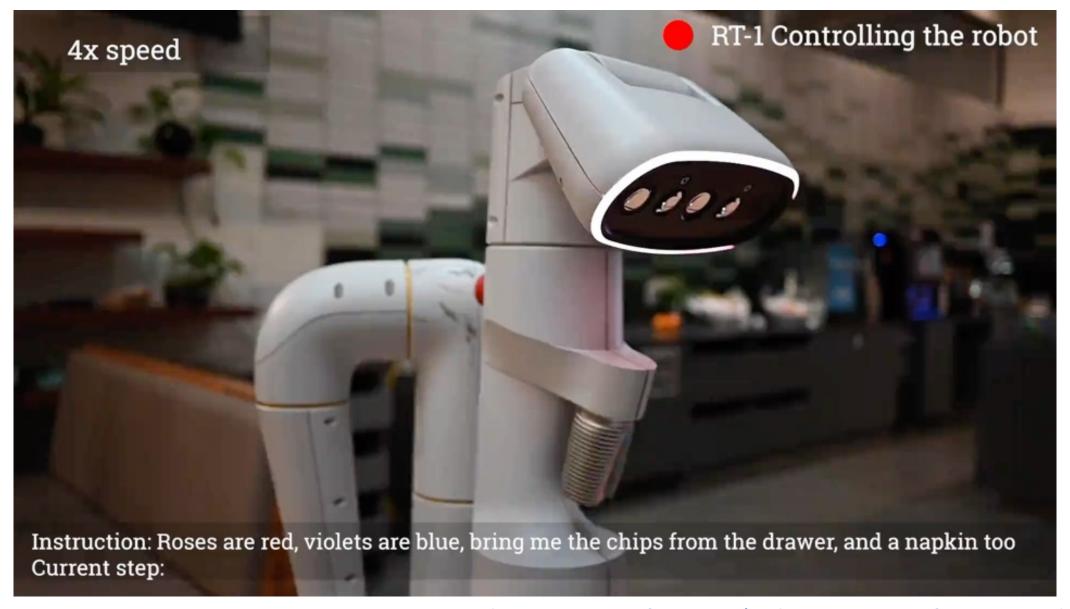
堂前幸康, 産業技術総合研究所

マニピュレーション委員会・第一回シンポジウムロボット革命・産業IoTイニシアティブ協議会

The impact of foundation models in robotics

基盤モデルのインパクト ーロボティクスにおける最新のチャレンジー

Robots meet Large-scale Language-Vision-Action models



RT-1: Robotics Transformer (robotics-transformer.github.io)

Meta-survey of LLM, LVM for robotics

Posted on 22 June 2023.

95.3K Views (Jun, 2024)

大規模言語・視覚モデルを用いたロボティクス基盤モデル

LLM • LVM for Robotics Foundation Models

牧原 昂志*,元田 智大*,花井 亮*,中條 亨一*,山田 亮佑**, 板寺 駿輝*, Floris Erich*, 室岡雅樹***, 篠田 理沙**, 中原 龍一*, 片岡 裕雄**, 堂前 幸康*

産総研 (オートメーション*、コンピュータビジョン**)研究チーム。

cvpaper.challenge: http://xpaperchallenge.org/cv robotpaper.challenge: https://sites.google.com/view/robotpaperchallenge

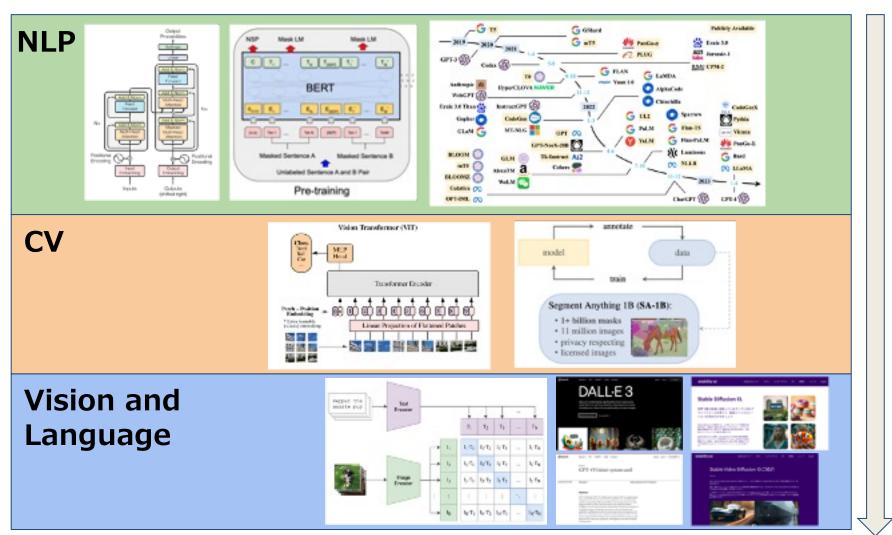
全168ページ

- 1. イントロダクション page. 1 page. 44
 - → Transformer以前からCV/Robotics分野の歴史を紹介。直近で話題になった GPT-4についても紹介する。
- 2. 論文紹介 page. 45 page. 129 → 大規模言語・視覚モデル分野で着目すべき論文をスライド1枚分に要約。 2023年6月時点で最新の情報を提供する80本以上の論文が掲載されている。
- 3. メタサーベイ page. 130 page. 157 → ロボティクスを議論の中心として、世界の研究者がどのような「戦略」を とっているのかについて、過去の研究からのトレンドに至るまでの流れを踏 まえつつ、議論を展開している。
- 著者紹介 page. 158 -

NLP, CV, V&L after the introduction of Transformer

Transformer [Vaswani+, 2017]

Transformers utilize only attention mechanisms. They have demonstrated superior performance compared to traditional models such as recurrent or convolutional models.



2017

2024

Large-scaleization

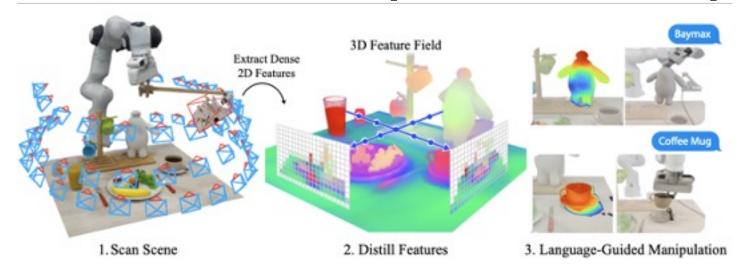
Robotic applications of Language-Vision Models 1

CLIP (Contrastive Language-Image Pre-Training) is a neural network model trained on various pairs of text and images. It can be applied to various tasks in a zero-shot manner. There are already numerous applications of CLIP in robotics.

CLIPort [Shridhar+, CoRL2021]

Prediction of affordances in robotic task by CLIP.

Distilled Feature Fields [W. Shen+, CoRL2023]



Designing a feature space that connects 2D image features to 3D geometry, enabling few-shot language-to-6DoF grasping.

Robotic applications of Language-Vision Models 2

Embedding knowledge into 3-D representations

LERF: Language Embedded Radiance Fields[Kerr+, 2023]

https://www.lerf.io/

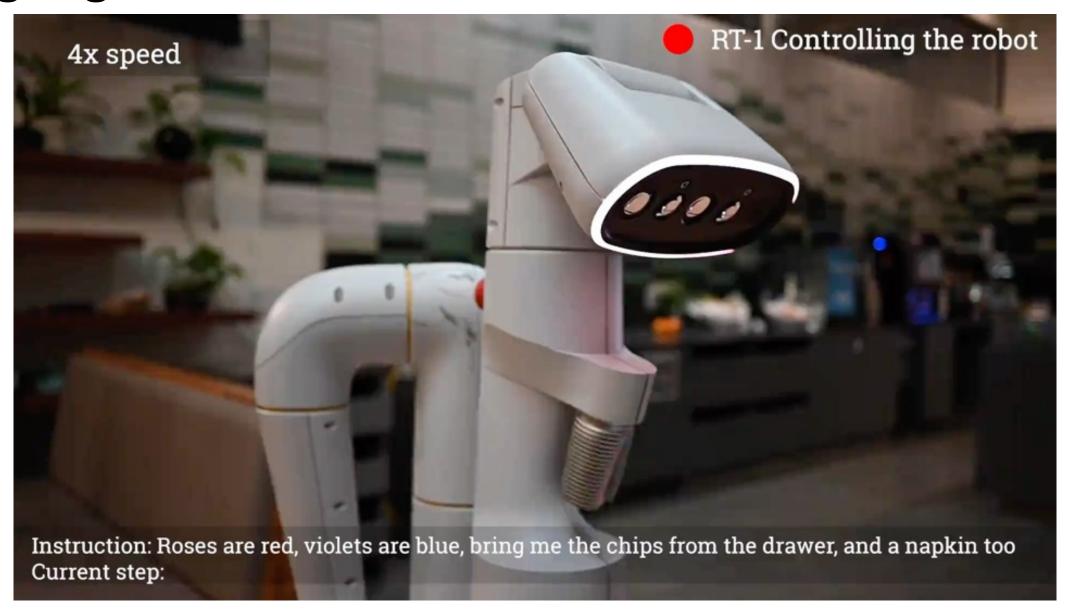
Connecting NERF and CLIP to embed text in a three-dimensional space.

LLM-Grounder [Yang, 2024] Chat with NeRF (chat-with-nerf.github.io)



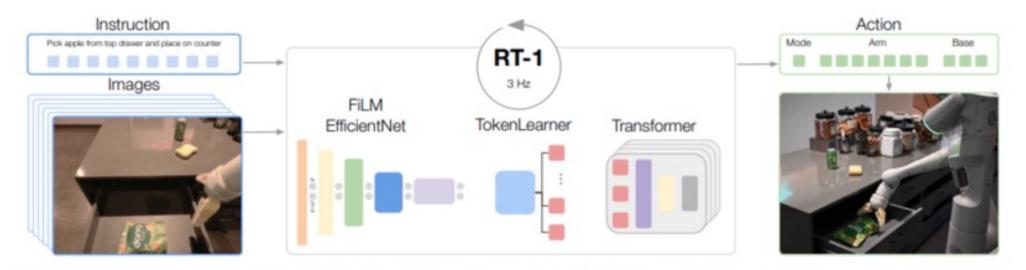
Combining the technologies of GPT-4/LLaVA/BLIP-2/NeRF Studio/LERF enables dialogue about 3D scene environments/objects.

Language-Vision-Action model

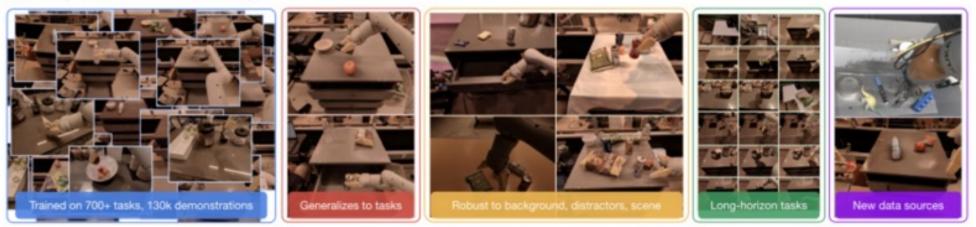


RT-1: Robotics Transformer (robotics-transformer.github.io)

RT-1: Robotics Transformer (robotics-transformer.github.io)



(a) RT-1 takes images and natural language instructions and outputs discretized base and arm actions. Despite its size (35M parameters), it does this at 3 Hz, due to its efficient yet high-capacity architecture: a FiLM (Perez et al., 2018) conditioned EfficientNet (Tan & Le, 2019), a TokenLearner (Ryoo et al., 2021), and a Transformer (Vaswani et al., 2017).



(b) RT-1's large-scale, real-world training (130k demonstrations) and evaluation (3000 real-world trials) show impressive generalization, robustness, and ability to learn from diverse data.

Large-scale real-world data

130,000 robot action sequences data

10 robots x 17 months

The necessity of large-scale data in foundational models

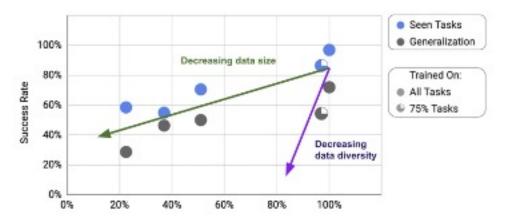
The scaling law [Kalpan, 2020]

The scale of data and the performance of the model are directly proportional.

Even in robotics, this law has begun to be demonstrated [Padalkar, 2023].

Models	% Tasks	% Data	Seen Tasks	Generalization			
				All	Unseen Tasks	Distractors	Backgrounds
Smaller Data	155054705	za ten ese	00 300656	0.8	275350	J20030r	702
RT-1 (ours)	100	100	97	73	76	83	59
RT-1	100	51	71	50	52	39	59
RT-I	100	37	55	46	57	35	47
RT-1	100	22 🔽	59	29	14	31	41
Narrower Data							
RT-1 (ours)	100	100	97	73	76	83	59
RT-I	75	97	86	54	67	42	53

- Increasing the amount of data improved generalization performance
- Task success rates improved as data diversity increased



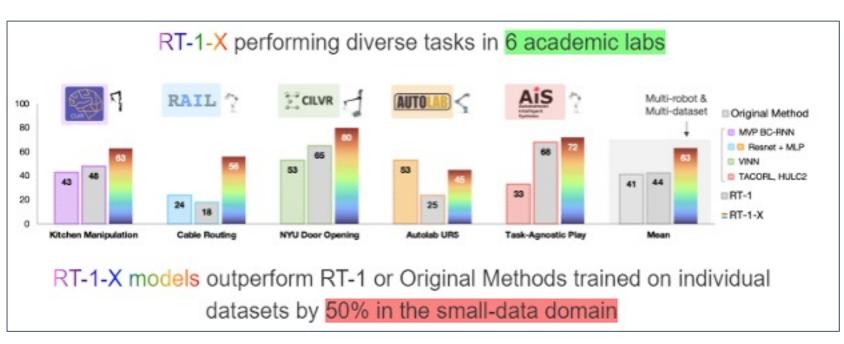
the more tasks a robot learns, the better it becomes at performing its job.

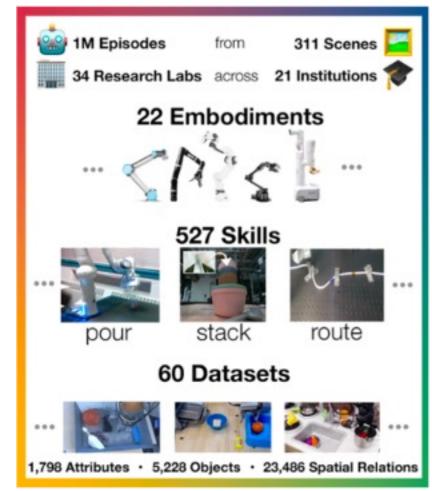
Open-X-Embodiment [Padalkar, et al, 2023]

Collecting real-world large-scale data through brute force methods

Open-X-Embodiment:

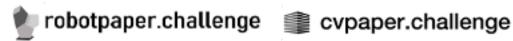
1M episodes, 527 skills (**160,266 tasks**) **22 different robots**, 21 institutions, 60 datasets



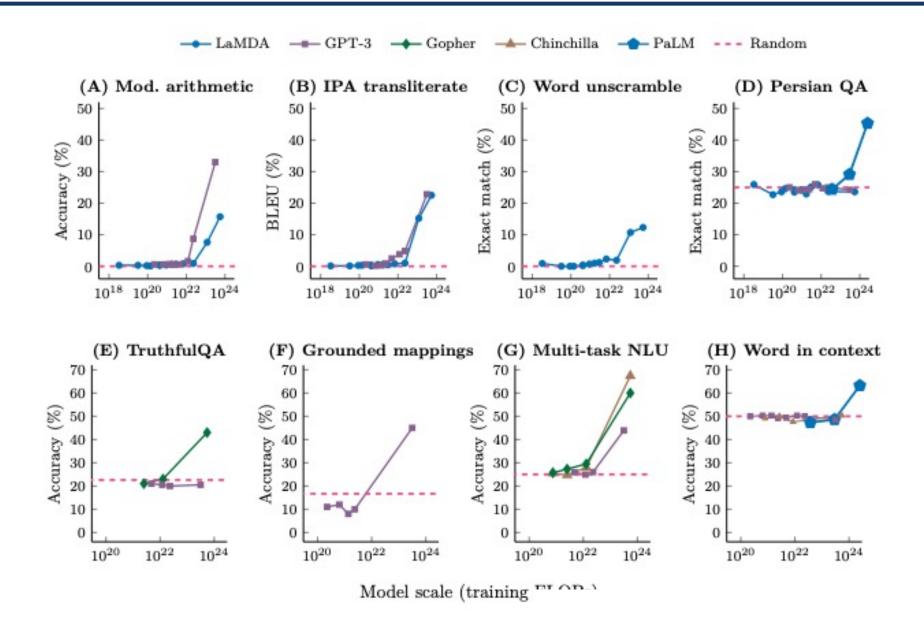


Open-X-Embodiment [Padalkar, et al, 2023]

https://robotics-transformer-x.github.io/



Emergent Abilities of Large Language Models [Wei 2022]



Collecting real-world large-scale data through brute force methods

AutoRT: 77K episodes, 6650 unique language instructions, **20 robots**, 7 months

AutoRT [Google DeepMind, 2023]

https://auto-rt.github.io/

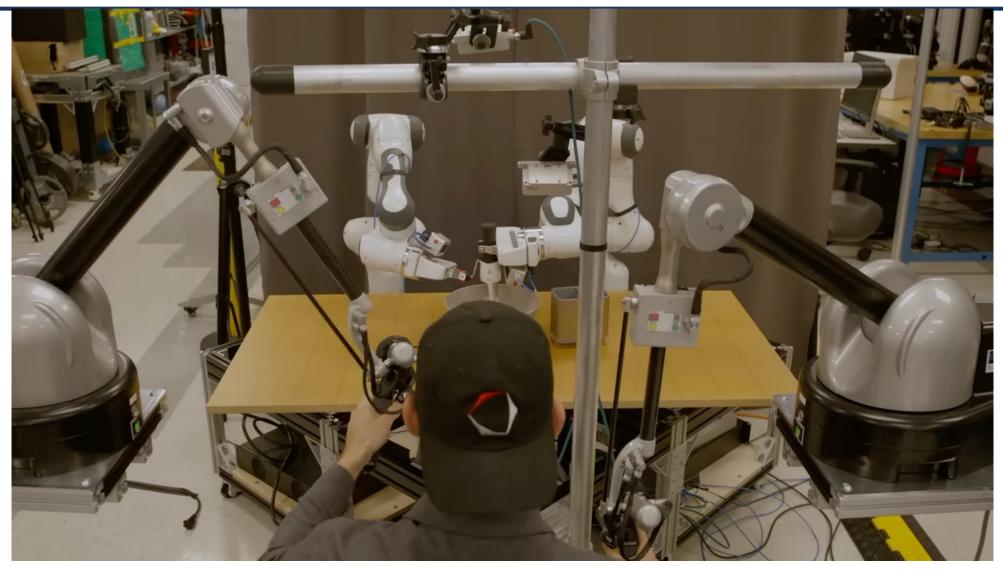
Transferring human behaviors to robots

Leader-follower systems have emerged with low cost, intuitiveness, and responsiveness.

Mobile ALOHA [Z. Fu+, 2024] https://mobile-aloha.github.io/

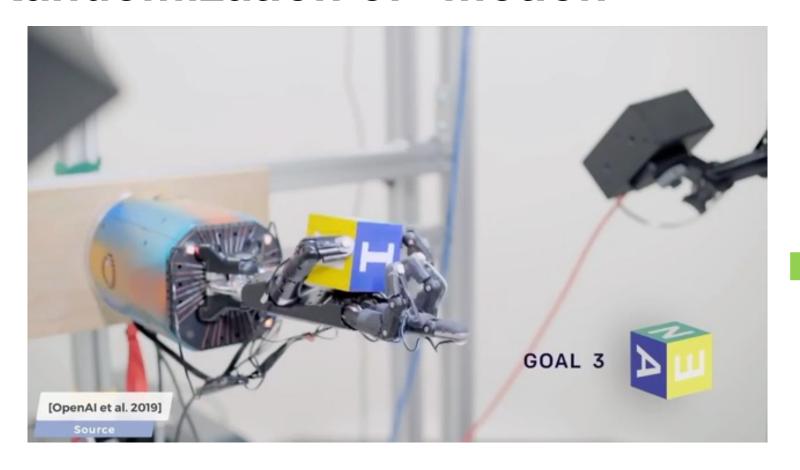
GELLO [P. Wu+, arXiv 2023] https://wuphilipp.github.io/gello_site/ ALOHA [T. Shao+, RSS2023] https://tonyzhaozh.github.io/aloha/

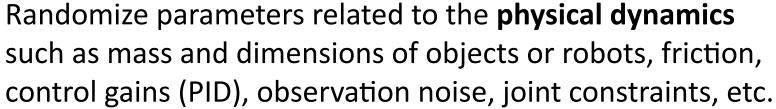
Imitation of human dexterity

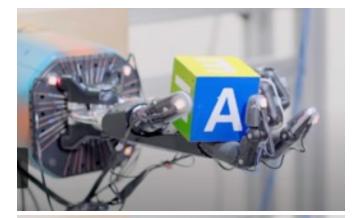


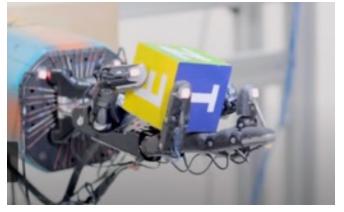
Teaching Robots New Behaviors [TRI, Youtube 2023]

Randomization of "motion"







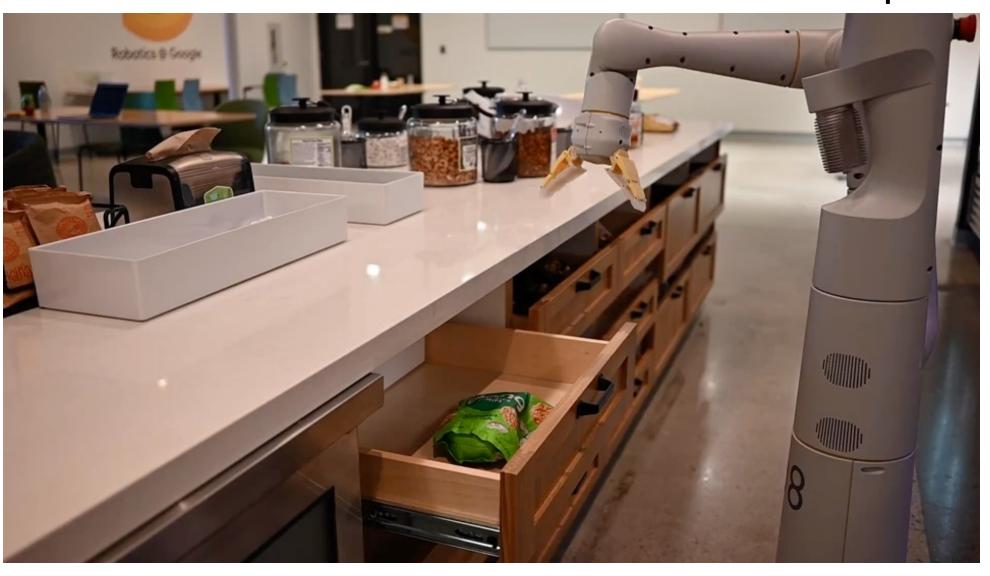


Generative Al augments robot's experience

Unreal experience!

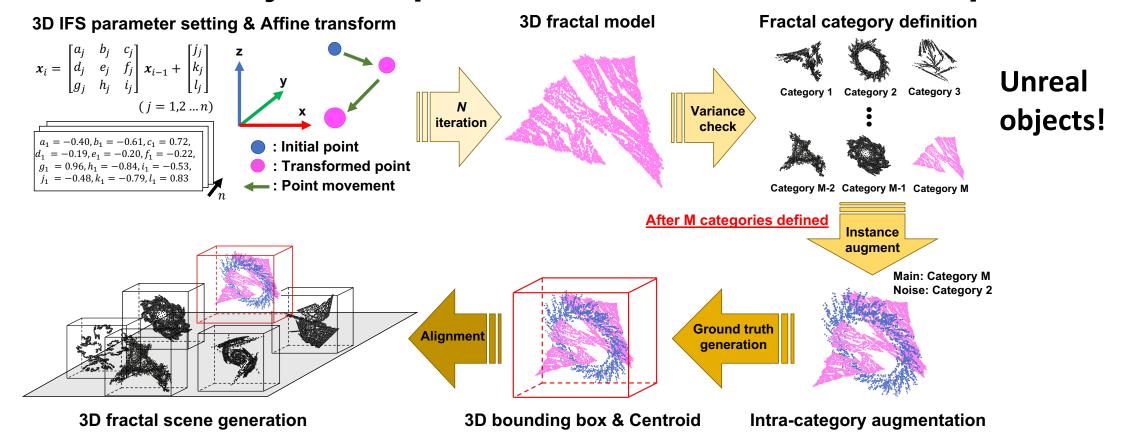
13 robots,17 months, to collect 130k demonstrations

+ Generative models?



<u>Scaling Robot Learning with Semantically Imagined Experience (diffusion-rosie.github.io)</u>

Randomization of object shapes based on mathematical equations



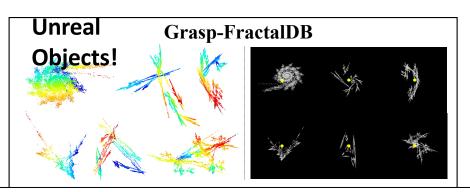
Randomly generate 3D shapes using fractals and place them in the scene. Utilizing a small amount of data for pretraining improves the performance of object detection (by VoteNet) from 3D point clouds.

Ryosuke Yamada, et el., "Point Cloud Pre-training with Natural 3D Structure", CVPR 2022

Randomization of object shapes using mathematical equations

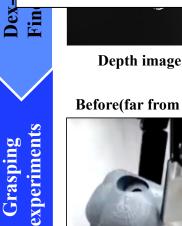
Pretraining with object database generated by fractals

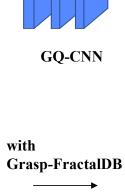
Dex-Net 2.0



In some cases,

- we don't need real world data for training real world robot
- we don't have to try to make the unreal experience resemble reality



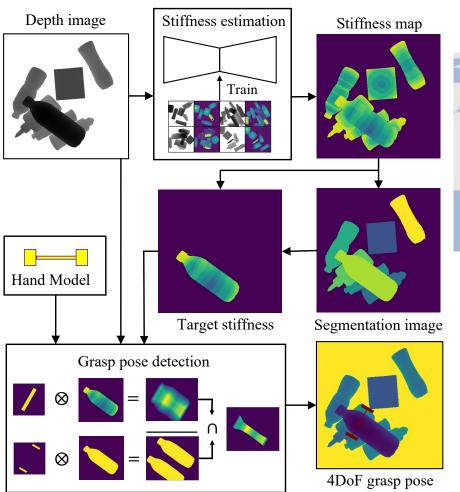


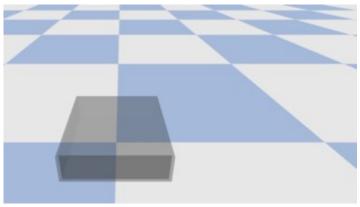
Yamada, SSII2022

Learning the relationship between vision(depth) and object softness through simulation

Picking by visual information

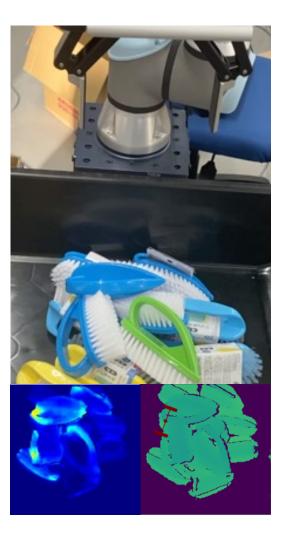
- Missing to grasp soft objects.
- Picking errors





Experiecne augmentation based on "depth-to-softness" simulation





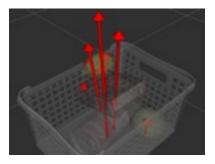
The robot "pushes aside soft objects" to pick up the target.

Without cross-modal ability

With cross-modal ability

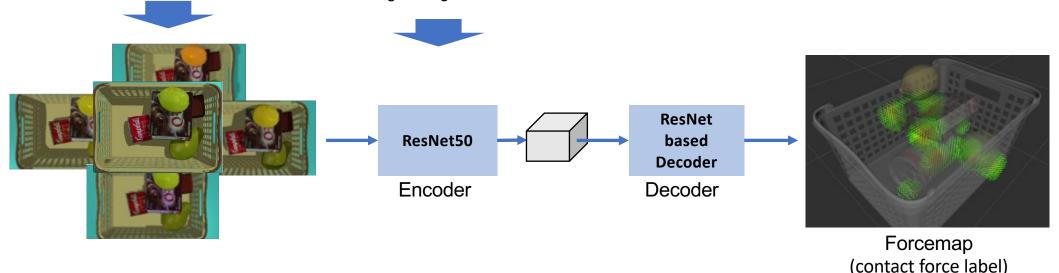
simulation

Domain Randomization



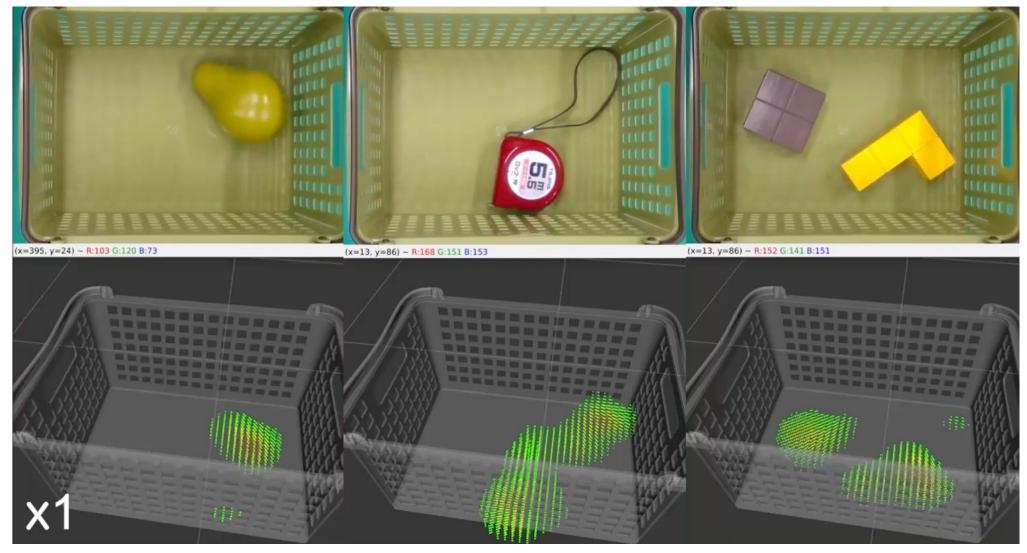
- Kernel Density Estimation
- moving average on time

Learning the relationship between vison and "forces acting between objects" through simulation.



[Hanai, IROS2023]

We have successfully achieved real-time visualization of the forces between objects in 3D, using only a single RGB image

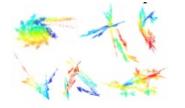


Conclusion: Learning from reality / unreality

Learning from reality

Accurate experience

- Randomization
- Curriculum

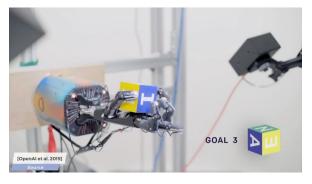


Imitation of human behaviors

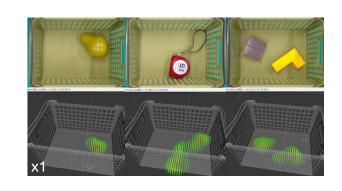
There are cases where it's not necessary to fill the gap!

Learning from unreality

Experience augmentation



Acquisition of cross-modal ability



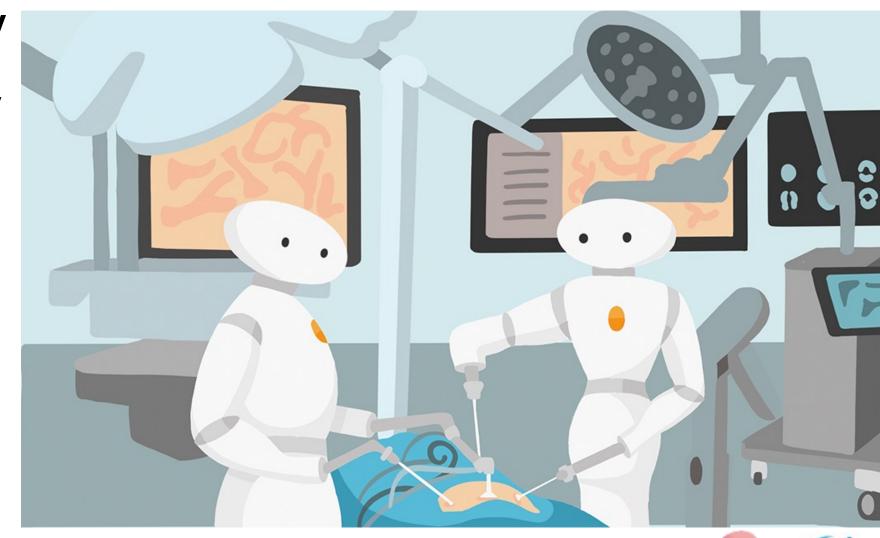
Future: Professional robot learned from experiences beyond reality

Learning from unreality

- Incidents that are unlikely to occur in reality
- Parameter randomization over a **slightly** broader range than reality

Example:

Experience in surgical vascular anastomosis slightly narrower than reality.



Next step: physical foundation models



Thank you for your attention! Special thanks to

Automaton Research Team, AIST

Ryo Hanai

Ixchel Ramirez

Koshi Makihara Kensuke Harada Tomohiro Motoda

Ryoichi Nakajo

Kei Kase

Tetsuya Ogata

Hirokatsu Kataoka

Ryosuke Yamada