A New Paradigm of Human-Machine Collaboration

Henning Kagermann

Chair of the Board of Trustees; former President acatech Global Representative & Advisor Plattform Industrie 4.0

Tokyo, 19 December 2019

A Joint German-Japanese Project

...will radically transform jobs and competence profiles

- → life long learning
- → new design of workplace and HMI

Society 5.0 2017

...creating a society where we can resolve various social challenges

→ How will introduction of AI etc. change workplaces?

- Similar social challenges (aging population, skills shortage, increasing diversity)
- → "historical **background** and social structures influence our approach"

Digitalization: The German Approach

Strategic Projects of the German Government (2011 – 2017)

Industrie 4.0

- IT/OT-Convergence
- SmartX, Ad-hoc connectivity, decentral

Rethink production processes and workplaces

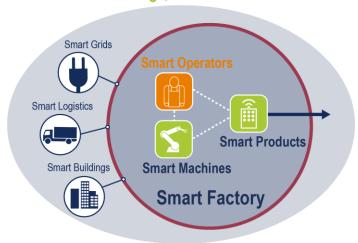
Smart Service Welt

- Business model of the digital economy
- AI

Rethink business models and ecosystems

Autonome Systeme

- At home, at work, on the way
- XBots & 'moral algorithms'


Rethink social, legal, and ethical implications

Paradigm Shift I: Industrie 4.0 Individual Products Under the Conditions of Mass Production

- **Smart Products:** Actively support production processes
- **Smart Operator:** Digital assistance systems support employees
- Smart Machines: negotiate independently
- **Hybrid teams:** Robots become co-workers
- Increasing complexity: Decentralized, connected autonomous systems

Internet of things, data and services

Goal: Agile, Learning and Adaptable Factories

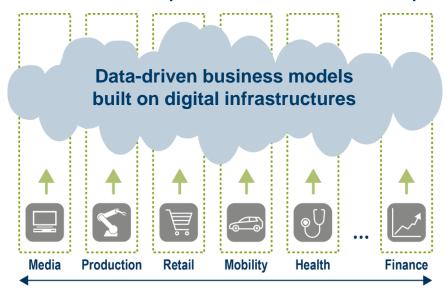
Future of Work and Human-Machine Interaction

Case-Study in Germany: Hybrid Teams

- Humans (supported by augmented reality)
- Autonomous robots and virtual agents (softbots) as partners

Joint problem solving:

- Work sharing according to specific capabilities
- Self-reorganization:
 - In case of unexpected incidents

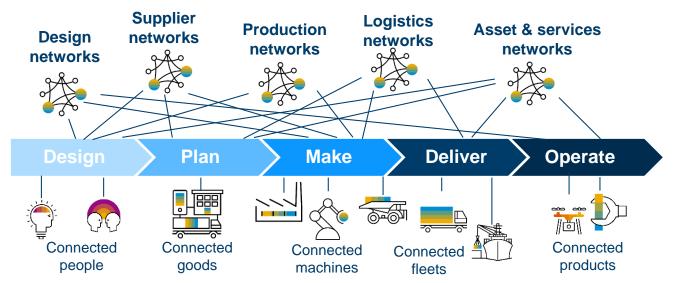

→ Robots have to adapt to human's behavior.

Paradigm Shift II: The Users at the Centre

...in their Respective Roles as Employees, Consumers, Citizens

- **Smart Services**:
- Personalized and designed to fit the respective situation using Smart Data
- 'On demand'
- **Across different industries**
- Requirements:
 - Semantic interoperability (machine-understandable data)
 - Methods and tools of Al (Machine Learning)
- → Smart Services are created in digital ecosystems.

Business Networks & Autonomous Systems Become Extensions of ERP



Networks:

- Collaboration
- Behavior based work

Autonomy:

- Routine work
- Edge computing

→ Processes break up into automated task and behavioral work.

Source: SAP SE

with machines

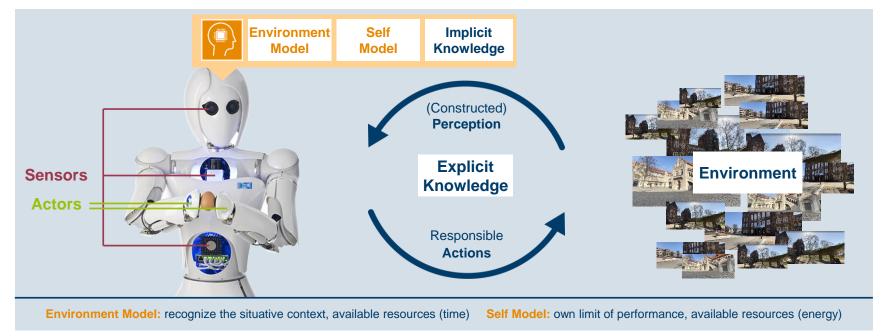
From standardized and automated (RPA) processes to adaptive processes

 → Platforms, ecosystems, smart talents

Human-only			Humans complement		Machines complement		Machine-only		
Sreate	Judge	Lead	Train	=xplain	Amplify	Interact	<i>Fransact</i>	Iterate	Predict

→ Collaborating teams of humans work alongside

Emerging New Challenges Due To Increasing Use of Autonomous Systems



- Autonomous systems independently achieve predefined goals
 - → Situational adaptability
- Potential to solve the major social issues
- New social, legal & ethical challenges
 - → Gradual and experience-based introduction via use cases
 - → Promotion through the early establishment of a broad-based public dialogue

Basic Principles of Autonomous Systems

A Holistic Approach is Necessary

- People will encounter autonomous systems on a daily basis: at home, on the move, at work ...
- Areas of application can no longer be viewed in isolation.
 - → Consistent human-technologyinteraction
 - → Consistent safety levels
 - → Consistent legal / ethical rules

Source: Fachforum Autonome Systeme im Hightech Forum (2017): Autonome Systeme

Example: Highly Automated Driving

Challenge: Human-Machine Interaction

- Complete documentation: Who is in control (and when)?
- Controlled **handover**: Is the buffer time enough?
- Overruling I: May the system reject a handover request?
 - Limited fitness to drive (fatigue etc.)
 - System error: Human is willing to take corrective actions
- Overruling II: May the system take control?
 - Driver deliberately steers towards a crowd (terrorist attack)
 - Driver violates traffic rules (paternalism?)

acatech DISCUSSION: Revitalizing Human-Machine Interaction Supported by RRI and Platform Industrie 4.0

- Japan and Germany have similar societal challenges, e.g. maturing workforce, aging machines and infrastructure
- In order to solve these problems, they increasingly rely on digital technologies (e.g. CPS, AI, and robotics)
- HMI plays a central role in this process, due to the increasing intertwining of natural and artificial intelligence
- The countries' solutions differ as a result of diverging societal trends & culturally related problem-solving approaches
- → Clarification and highlighting of similarities and differences and identifying common areas of cooperation for future German-Japanese initiatives

The Future of Employment

A German and Japanese View

- A decrease in the working population has already begun that implies social challenges.
- Japan and Germany need to increase their labor productivity by improving human skill sets.
- As technology progresses, more routine manual and cognitive tasks will be replaced by machines.
- But digitalization may help to offer employees more high-value-added jobs; the society must support the changes.

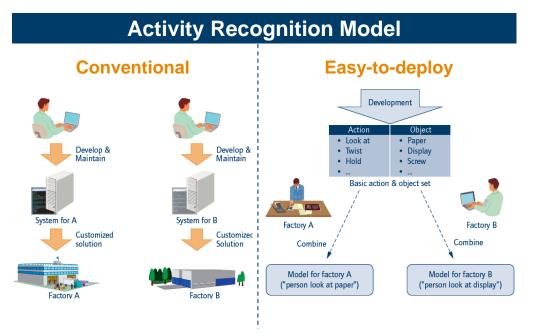
Germany

Common understanding of all stakeholders:

- Need for agile work and lifelong learning
- Potential to improve work attractiveness, employability and work-life balance
- advantages of human-centered, hybrid teams

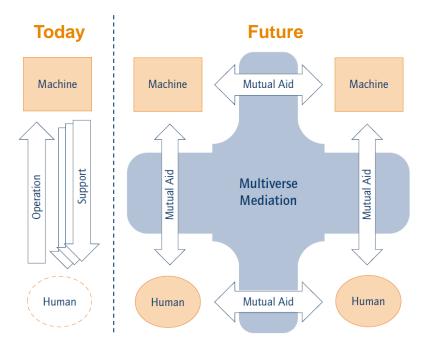
driven by the implementation of Industrie 4.0

Japan


The **separation of tasks** has begun that implies a process of substitution:

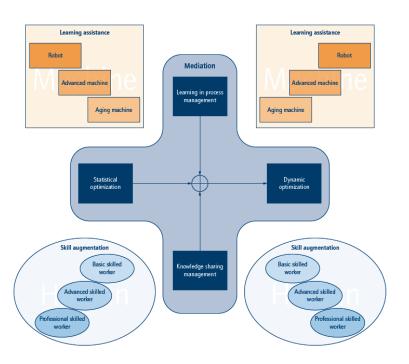
- First, mostly **routine work** is **substituted** by machines → **humans** are then **motivated** to **create** further **machines**
- As more machines are introduced, humans are required for highly skilled work → companies invest in HR-development
- The rate of machines introduction increases
 → managers start to replace humans and layoffs commence
- Humans must train by themselves during their entire lifetime

Transfer Knowledge Efficiently Between Machines, Experts and Beginners


- Worker (either human or machine) activity recognition can play a vital role.
- Conventional methods create separate recognition models, because of the diversity of activities and their representation.
- The goal: An easy-to-deploy human-activity recognition model, which can be applied to different factories as a standard solution at a low cost.

Source: DFKI

The Transition of Interaction Models


- Sustainable economic growth requires that humans find fulfillment in their work while evolving hand in hand with machines.
- Today's model: machines assist humans.
 Less training required for humans.
- Future model: harmonizing HMI
 - Observe all interactions
 - Digitize and accumulate observations
 - Identify potential improvements
 - Systematically adjust the capabilities of both humans and machines

Source: Own presentation based on Hitachi

New Paradigm of Human-Machine Collaboration

- In a workplace, where the new model is introduced employees must become skillful in dealing with
 - statistical optimization
 - dynamical optimization
 - learning in process
 - knowledge sharing management supported by digital technologies.
- Enterprises should embrace the new paradigm of human-machine collaboration.

Source: Own presentation based on Mitsubishi Electric Corporation

Conclusion

- Digital technologies are expected to help solve social challenges.
- The digital transformation can enable a novel, human-centered manufacturing system that revitalizes HMI.
- A new HMI model a social mediation process that adjusts for mutual support is under development.
- It is necessary to share experiences at various levels, such as factory, company, country, world, etc.
- We have recognized similarities and differences among the two countries on how to deal with the issue at hand.
- We encourage keeping discussions open among multiple countries in the effort to establish a sustainable society.

Project Team & Download Link

Prof. Dr. **Henning Kagermann Project Leader**

Dr. Youichi Nonaka Co-Project Leader

https://en.acatech.de/publicatio n/revitalizing-human-machineinteraction-for-theadvancement-of-societyperspectives-from-germanyand-japan/

(infineon

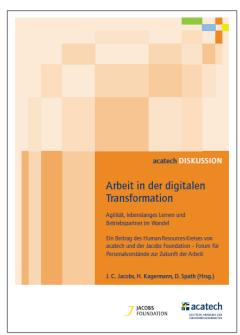
This German-Japanese Project was supported by members of the Research Council of the Plattform Industrie 4.0

30 science and industry representatives working together on the following tasks:

- creating scientific, research-based recommendations
- realizing knowledge transfer
- provision of new, pre-competitive research questions

Key Success Factor Cultural Change

Organizational agility:


- Ambidexterity (two operating systems one organization)
- Creating space for experiments
- Decentralized decisions
- Self-determined and flexible work

Lifelong learning:

- Flexible, participative, in networks
- Increasingly personalized and on-the-job
- Using digital learning methods

• Educational institutions:

Strengthening the transfer as "third mission"

